
726 MONOCHROMATIC AND LAUE DIFFRACTION TECHNIQUES 

MOFFAT, K., SZEBENYI, D. & BILDERBACK, D. (1984). Science, 
233, 1423-1425. 

PIANE'VrA, P. & BARBEE, T. W. (1988). Nucl. lnstrum. Methods, 
A266, 441-446. 

VICCARO, P. J. & SHENOY, G. K. (1988). Nucl. lnstrum. Methods, 
A266, 112-115. 

ZACHARIASEN, W. H. (1945). Theory of X-ray Diffraction in Crys- 
tals. New York: Wiley. 

Acta Cryst. (1989). A45, 726-732 

Genera  o f  M i n i m a l  B a l a n c e  S u r f a c e s  

BY W E R N E R  FISCHER AND ELKE KOCH 

lnstitut fiir Mineralogie der Universitiit Marburg, Hans-Meerwein-Strasse, D-3550 Marburg, 
Federal Republic of  Germany 

(Received 7 April 1989; accepted i June 1989) 

Abstract 

The genus of a three-periodic intersection-free surface 
in R 3 refers to a primitive unit cell of its symmetry 
group. Two procedures for the calculation of the 
genus are described: (1) by means of labyrinth graphs; 
(2) via the Euler characteristic derived from a tiling 
on the surface. In both cases new formulae based on 
crystallographic concepts are given. For all known 
minimal balance surfaces the genera and the labyrinth 
graphs are tabulated. 

1. Introduction 

In a series of papers (Fischer & Koch 1987; 1989a, b; 
Koch & Fischer 1988, 1989a, b) minimal balance 
surfaces, i.e. three-periodic minimal surfaces sub- 
dividing R 3 into two congruent labyrinths, have been 
studied with respect to their symmetry properties. It 
turns out that the symmetry of a minimal balance 
surface is best described by a pair of space groups 
(3-H, where (3 represents the full symmetry of the 
surface and H is that subgroup of G with index 2 
that does not interchange the two labyrinths and the 
two sides of the surface. Instead of space-group pairs 
proper black-white space groups may also be used 
(cf. Mackay & Klinowski, 1986; Fischer & Koch, 
1987). New types of minimal balance surfaces have 
been derived making use of the fact that each twofold 
axis belonging to G but not to H has to lie within 
each minimal balance surface with symmetry (3-H. 

Within the cited papers for each minimal balance 
surface the fundamental topological constant called 
the genus has been given without an explanation of 
how it had been calculated. This will be given below. 

soid and also a plane have genus 0, a torus (doughnut 
with one hole) genus 1, a pretzel (doughnut with two 
holes) genus 2 etc. Consequently, each three-periodic 
minimal surface has an infinite genus in this sense. 

Therefore, a modified definition has been intro- 
duced for the genus of a three-periodic minimal sur- 
face (Schoen, 1970) counting only the number of 
handles per unit cell. In other words, the surface is 
embedded in a (flat) three-torus T 3 to get rid of all 
translations, and then the conventional definition of 
the genus is applied. The procedure of constructing 
T 3 from R 3 corresponds to identifying the opposite 
faces of the primitive unit cell [for a popular introduc- 
tion to such manifolds see Weeks (1985)]. This may 
be visualized in analogy to transferring a two-periodic 
pattern in R 2 to the torus T 2 by rolling up a two- 
dimensional unit cell in both directions. In this 
approach an object moving within one labyrinth of 
the minimal surface and leaving the unit cell across 
one face will reenter it through the translationally 
equivalent opening on the opposite face. Obviously, 
the unit cell used has to refer to H, because otherwise 
the moving object thereby might change into the other 
labyrinth. 

The genus of a three-periodic minimal surface may 
be calculated in different ways, two of which will be 
discussed here: (1) by means of the labyrinth graphs 
(Schoen, 1970; Hyde, 1989); (2) via the Euler charac- 
teristic determined with the aid of any tiling on the 
surface. 

A third possibility makes use of the flat points of 
the surface (Hyde, 1989). As flat points are not easily 
discernible in all cases, however, it seems more 
appropriate to facilitate the search for fiat points by 
the knowledge of the genus. 

2. The genus of a minimal balance surface 

A non-periodic surface in R 3 is said to be of genus 
g, if it may topologically be deformed to a sphere 
with g handles. According to this definition an ellip- 
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3. Labyrinth graphs 

As a three-periodic minimal surface without self- 
intersection and the labyrinths separated by it are 
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complex objects, Schoen (1970) proposed to rep- 
resent each labyrinth by a graph (skeletal graph in 
his terminology). The connectedness of a labyrinth 
and the interpenetration with its counterpart may be 
visualized more easily from the two graphs. 

For each of the two labyrinths associated with an 
intersection-free three-periodic minimal surface a 
labyrinth graph may be constructed as follows. Each 
graph is entirely located within its labyrinth; each 
branch of a labyrinth contains an edge of its graph; 
each circuit of one labyrinth graph encircles an edge 
of the other one. 

Any of the two labyrinth graphs may be used to 
represent the surface. As each circuit of the graph 
corresponds to a handle of the surface, the number 
of circuits per unit cell (with respect to H in the case 
of a minimal balance surface) or of the finite graph 
embedded in T 3 has to be counted to get the genus. 
This may be done in two different ways. 

(a) In a modification of the procedure proposed 
by Hyde (1989) a connected subgraph containing no 
translationally equivalent vertices may be separated 
from one labyrinth graph. Then 

g = p / 2 + q  (1) 

holds, where p is the number of edges connecting the 
finite subgraph to the rest of the infinite labyrinth 
graph and q means the number of edges that must 
be omitted to make the subgraph simply connected. 
As p equals at least 6 the genus of a three-periodic 
surface without self-intersection must be g-> 3. 

(b) Keeping in mind the embedding in the flat torus 
T 3, we may derive a more crystallographic formula. 
The number of edges in the embedded labyrinth graph 
may be calculated from 

e = ~ miei/2, 
i 

where rni is the multiplicity of the ith vertex with 
respect to a primitive unit cell of H, ei is the number 
of edges meeting at this vertex and i runs over all 
symmetrically inequivalent vertices of the labyrinth 
graph. Then g is the difference between e and the 
number es of edges in any simply connected subgraph 
with the same number v of vertices. As 

e s = v - l = ~  rni-1 
i 

holds, it follows that 

g =  1 + ~ m ~ ( e J 2 -  1). (2) 
i 

As labyrinth graphs may help to visualize minimal 
balance surfaces, details of labyrinth graphs are given 
in Table 1. Each type of minimal balance surface is 
characterized by its symbol in column 1, its inherent 
symmetry G - H  in column 2 and the reference num- 
ber of its pattern of twofold axes (linear skeletal net) 
in column 3 (Fischer & Koch 1987, 1989a, b; Koch 

& Fischer, 1988, 1989a, b). The genus is given in 
column 4. The last three columns contain information 
on one of the two labyrinth graphs. In column 5 its 
vertices are described by their Wyckoff letters, their 
site symmetries and a reference point for each kind. 
The adjacent vertices of each reference point, i.e. the 
vertices connected to it by edges of the graph, are 
indicated in column 6. For this, each set of adjacent 
vertices, which are equivalent with respect to the site 
symmetry of the reference point, is represented by 
only one coordinate triplet followed by the number 
of such vertices in parentheses. If vertices are not 
completely fixed by symmetry suitable values for the 
free parameters are given in the last column. 

A closer inspection of the table reveals a remarkable 
property of different minimal balance surfaces 
spanned by the same set of plane nets of twofold 
axes: in most cases the genus is the same for minimal 
balance surfaces consisting of either catenoids, multi- 
ple catenoids, infinite strips or branched catenoids. 
The reason for this is displayed in their labyrinth 
graphs. In a minimal balance surface with catenoid- 
like surface patches two adjacent catenoids between 
the same pair of nets are centred by vertical edges of 
the same labyrinth graph and separated by a channel 
of the second labyrinth containing a horizontal edge 
of the second graph. If these two catenoids are united 
to a multiple catenoid this edge of the second graph 
is removed and a new horizontal edge connecting the 
two centres of the catenoids is added to the first graph. 
As both graphs are congruent this procedure amounts 
to shifting part of the edges within each labyrinth 
graph. As the sum in (2) is unchanged, this shifting 
of edges does not change the genus as long as the 
unit cell is preserved. An example is given in Fig. 1. 

If, however, shifting of edges changes the symmetry 
such that the unit cell is not retained, the genus also 
changes. Formula (2) shows that an enlargement of 
the unit cell by a factor of n results in a change of g 
into 

g , , = l + n ( g - 1 )  (3) 

[cf. also (6) and (9) to (12) below]. Accordingly a tP 
surface has genus 3, whereas - owing to the doubling 
of the primitive unit cell of Cmmm compared with 
that of P 4 / m m m  - the genus of an MC5 surface is 
5. Formula (3) also holds if one and the same minimal 
balance surface is described not only in the smallest 
possible unit cell but also in a multiple cell. The genus 
of a minimal balance surface as defined above, there- 
fore, only makes sense if it is referred to its inherent 
symmetry. 

4. Euler characteristics 

An intersection-free surface in R 3 (or T 3) may also 
be characterized by a number X, called its Euler 
characteristic. X is related to the genus of the surface 
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Minimal 
surface 

P 

C(P) 

D 

C(D)  

c ( s )  

S 

Y 

C(Y) 

HS1 

HS2 

CLP 

tD 

oCLP 

oDa 

oDb 

T a b l e  1. The genera and the labyrinth graphs for all known minimal balance surfaces. 

Labyrinth graph in H 

G -  H C a s e  

l m 3 m - P m 3 m  1 

l m 3 m - P m 3 m  1 

Pn3m-Fd3m 2 

Pn3m-Fd3m 2 

la3d-  lag 5 

la3d-143d 5 

I4t32-P4332 6 

14t32-P4332 6 

P6222-P6t22(2c) 7 

P6222-P3212 8 

P42/mcm- 9 
P 4 J  mmc( v ) 

P42 /nnm-14 t /amd 10 

Pccm- Cccm 14 

Pnnn- Fddd 15 

Cmma- lmma 16 

Genus Vertices Adjacent vertices Parameters 
3 la m3m 000 100(6) 

9 l a  m3m 000 ~ - (12 )  
3c 4 /mm.m ~ 000(4) 

3 8a 43m 000 444~j 

19 8a 43m 000 ~88(12) 
16d.3m s55~ ~1(6)  

9 16c.3. x~x~x t ~ ¢ ~ ( 1 ) ;  x~, ~2t, t _ x~(3) x~ ~- 0-1 

11 12a 4.. 3 ~ x~ =0 .2  ~(~4 x,xtx~(4) 
16c.3. x~x~xt 3~(3) 

4a.32 ~ s a ~ w ,  

13 ~ 4a .32 ~ --~+ x~, ~ -x~ ,  1 - x~(6) x~ ~0 .5  
8c.3. x ix i x  I 8 8 8 ~ , , ~ !  

7 6b. .2x~,2x~,~ x2 ,1+y2,z2(2);y2 ,  l - x 2 + Y 2 , - ~ + z 2 ( 2 )  x~ = 0.4; x2 ~0.25;  
12c 1 x2Y2z 2 x t , 2 x  ~ - 1,~(1); 1 - x ~ ,  x~, ~(1) Y2~0; 7.2 ~ 0"3 

4 3a ..2 x ~ t ~  x2, 2x~, -~(2) x I = -0 .1;  
3 b ..2 x2.~ 2 / 2-~t, .~,  0(2); x2, - 1 + 2x2, ~(2) x 2 ~ 0"25 

3 2a mmm. 000 0~(2) ;  100(2) 

3 4a 4.m2 000 02t- ~(4) 

3 4c. .2/m 000 00~(2); ~0(2)  
I I I I A  ~ 3 8a 222 000 ,~,~4~, 

3 4emm2Otz ,  ~,' t a , ~ - z , ( 2 ) ; ~ ' , ( 2 )  z,~O.1 

H 

MC1 

C ( H )  

R3 

MC2 

MC3 

MC4 

C(R3) 

tP 

MC5 

tC(P) 

P63/ mmc- P6m2 22 

P63/ mcm-P62m 22 

P63/ mmc- P6m2 22 

P6/mcc-  P6 /m  23 

P6/mcc-  P6 /m  23 

P6/mcc-  P6 /m 23 

P6/mcc-  P6 /m  23 

P6/mcc-  P6 /m 23 

1 4 / m m m - P 4 / m m m  24 

P42/mcm- Cmmm 24 

I 4 / m m r n - P 4 / m m m  24 

3 I a ()m2 000 t 2 3~0(3) 
lc ?,mE ~0 000(3); ~]1(2) 

7 la  62m 000 xlO0(3) xl ~ x2 ~ -0 .3  
2d 6-" 332121 .~222~(3 ) 
3 f  m2m xlO0 000(1); x2~(2) 
3g m2m x2~ -~(2) ;  x100(2) 

7 l a  6m2000 211~,~ 
ld  6m2121 _21 ii.l~ 

. ~32  3 3 2 1 . a !  

l f 6 m 2  ~21~ 000(6); ~-23 ~-(3) 

13 I a 6 / m . .  000 xly10(6) x I ~ 0-4; 
- 1 2  2c 6.. gg0 xl - Y l ,  xt ,  0(3) Yt ~0 - I  

6j m.. xtytO 000(1); 2~0(1); 1 - x l ,  Yl, 0(1); x tyl l (2)  

13 la 6/ m.. 000 xlyl0(6) x I ~ x 2 ~ 0.4; 
2c ().. ~ 20 xt - Yt, xl ,  0(3) Yl ~ Y2 ~ 0-1 
6j m.. x ,y  I 0 000( 1 ); ~ ~0( 1 ); x2Y2~(2) 

6k m.. x2Y2~ 1 - x2, )52, ~(1); xly10(2) 

13 la 6/ m.. 000 xlyt0(6) x I ~ x2 ~0 .4  
,47. _t_2! 
. . . .  332 x2-Y2, X2, ~(3) Yl ~ Y2 ~ O" 1 

6j m.. xlYtO 000(1 ); 1-xl ,  )51,0(1 ); x2Y2~(2) 
6k m.. xzy2~ 2- ! !11 332~.'); xlyIO(2) 

13 I b 6/m.. 00½ x2Y2t(6) x I ~ x 2 ~ 0.4 
2c 6.. ~20 x l - y  I , x l ,  0(3) Yl ~ Y2 ~ 0" 1 

21 
6jm.. xlylO ~g0(1); 1 - x t ,  Pro, 0(1); x2y2~(2) 
6k m.. x2y2~ 02(1) ;  xly10(2) 

37 1 a 6/m.. 000 xtyl~(l 2) xl ~- x2 ~- 0-4; 
2c 6.. ]20 x , -y l ,  xl ,  ~(6) Yl ~ 0.1; 
3 f2 /m . .  ~-00 xlyl~(4) Y2 ~ 0.3 
6k m.. x t y ~  000(2); ~ to(2); ~00(2); x2Y2~(1); 

y~, -x~+y~,  ~(1); 1 -y~,  x~-y~, ~(1) 
6k m.. x2Y2~ xtYt~(l); xt - Y l ,  xl ,  ~(1); 

l -  xl + y l, l-xl,-~(1) 

3 la 4 /mmm 000 001(2); 100(4) 

5 4g 2ram xt00 ,~t00(1); x2~(2) x I ~ x2 ~- 0.25 
4h 2minx20 ~ x,00(2); l -x2 ,0 ,~ - ( l ) ;  1 x2~ ~(2) 

9 I a 4 /mmm 000 ~ t t ~20(4); ff~ ~(8) 
1 c 4 /mmm 1 ~0 000(4) 
2 e mmm. 0½ ~ 000(4) 
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Minimal 
surface 

R2 

MC6 

MC7 

C ( R 2 )  

oPb 

oMC5 

oC(P)  

PT  

HS3 

ST1 

rPD 

BC1 

BC2 

ST2 

BC3 

Table 1 (cont.) 

G -  H C a s e  G e n u s  V e r t i c e s  

1 4 / m c m - P 4 / m b m  25 9 2a 4/m..  000 

4 g m . 2 m x t , ~ +  x l , 0  

1 4 / m c m - P 4 / m b m  25 9 2a 4/m..  000 

4g m.2m xl,  ~+ xt ,  0 

4h m.2m x2, -~ + x2, 

P4/mcc -  P 4 / m  25 9 1 b 4/m..  00-~ 
l c 4 / m . . ~ O  

4j m.. xly~O 

4k m.. x2y2~ 

1 4 / m c m - P 4 / m b m  25 25 2a 4/m..  000 
2d m.mm 0~0 

4h m.2m x~ , ~ + x t ,  ~- 

4h m.2m x2, ~ + x2, 

Fmmm-Crnmm 26 3 2b mmm ~00 

Pccm-P2 /m  26 5 2m m x~ytO 

2n m x2Y2~ 

F m m m - C m m m  26 9 2a mmm 000 

2b mmm ~00 
4 f . . 2 /m  11, aa~ 

F m m m -  Cmmm 26 5 2b mmm ½00 

4j m2m 0Yt~ 

P6222-P6422(2c) 27 7 3a 222 000 

6 f  2.. ~-0z 1 

P6222-P6422(2c) 27 7 3d 222 ~0~1 

6 f  2.. ~-0z 1 

R 3 m - R 3 m ( 2 c )  28 3 6c 3m 00z I 

P6322- P6s 31 9 2a 3.. 00z~ 
12 2b 3.. ~ z  2 
12 2b 3.. ~ z  3 

6c 1 X4yaz4 
6c 1 xsysz  ~ 

P42/ nnm-P42nm 32 7 2a 2.ram OOz I 

2a 2.mm 00z 2 

P42/nbc- P42/n 32 7 4 f  2.. OOz 1 

I 4 2 2 - I 4  33 6 2a 4.. 00z I 

2a 4.. 00z 2 

8c 1 x3Y3Z 3 

Labyrinth graph in H 

Adjacent vertices 
- x l ,  x l ,  0(4) 

-~0(2); 1 - x , ,  3~-xl, 0(1); 
xl ,  ~ + x l ,  1(2) 

- x l ,  xs, 0(4) 
~0(2); x:, ',+ x~, ~(2) 
x t , t + x t , O ( 2 ) ;  1 - X 2 , s - x 2 , ~ ( 1 )  

x2Y2~(4) 
xlyt0(4)  

~--~0(1); :rl, 1 - Y t ,  0(1); x2Y2t(2) 
oot(1); x tyl0(2)  
- 1 i x~, ~-xl, ~(8) 

1 1 x l ,  ~ + x l ,  ~(4) 
1 i t~o(4); 0-~0(2); x2, ~+x2,  ~(1); 

-~ - x 2 ,  x2, ~ ( 2 )  
, I + x t , t ( 2 )  x l ,  ~ + x l ,  ~(1); ~ - x l ,  1 

~-01(2); ~0(4)  
.~0710( 1 ); x2y2~(2) 

xtylO(2); 1 -X2 ,  1 -Y2 ,  ~(1); 
"~2, 1 --Y2,1(1); 1 --X2,352,21-(1) 

~00(2); ~ 0 ( 2 )  

000(2); ~~0(2); 442,~,, ! !!'Q~ 
~-00(4) 

~00(2); I ' 3, ~ - Y t ,  ~(4) 
~-00(2); 0y,~-(2) 

1 1 0, ~, ~ - z I (4) 
000(2); ~,0, 1 - zl(1) 
T l  . i  ~0~(2), ~0z1(2) 
I I 303(1); '  t 2 ,^ ,  

00Yt(1); ,~, ~,2 _~_ zt(3 ) 

xsYsZs(3) 
12z3 ( 1 ); x 4 - Y4, x4, / + z4(3 ) 
12 
~,.~Z2(1), YS, X5--Y~, Z5(3) 
~, ~, -~+ ~_~(~); x~y~(~) 
00ZI(1); I/Z3(1); x4YaZ4(1) 

, I _ 1 +  Z2(2) 00Z2(1); 2, ~, 
t i "  00z1(1); ~, 3, ½+ z1(2); 10z2(4) 

0 , 0 , 1 _ z ~ ( 1 ) ; I  I I ,~, 10zt(2 ) 

00z2(1); xsysz3(4) 
00Zl(1); 10z2(4); I _x3,~_y3,~.t I + Z3(4 ) 

OOZl(1); ~, ~, - ~ +  z2(1) 

Parameters 
x I ~ 0"4 

xt ~ x 2 = 0 . 4  

x l ~ x 2 ~ 0 " ] ;  

Yl ~Y2 T M  

x I ~0"1;  

x 2 ~ 0 . 4  

x I -~ x 2 -~ 0-25; 

YI ~ Y2 ~ 0"25 

Yl ~ 0"4 

z I ~ 0"3 

zl ~ 0"3 

z I ~0 -15  

Z I ~ Z3 ~ Z5 ~0"4;  
z 2 ~ 0.6; 
z4~0 .1 ;  
x 4 = x s ~ 0 . 3 ;  

y4~-ys~-O 

z l ~ 0 . 1  

z 2 ~ 0.4 

z t ~ 0.4 

z I ~ 0 . 1 ;  z2 ~ 0.4; 

x3 ~ 0 . 1 ;  y3 ~ 0-4; 
z 3 ~--0 

C ( ± Y )  

± y  

la3-Pa3 48 13 4b.3. ~11 

8c.3. x l x t x  I 

la3-Pa3 48 21 8c.3. XlXlXt 

1 t , xi(6) x l = 0 " l  =,- X l ~ .~..l- x I 
0-',0(3) 

x t , ~ - x i , ~ + x l ( 3 ) ,  x l = 0 " l  .~t .~l .~t  ( 1 ) ;  i | . 

x l ,  ~ - x , ,  -~  + xl(3) 

y*  

oPa 

la3d-14,32 - -  3 8 a  .32 I-~ 

l m m m - P m m m  - -  3 1 a mmm 000 

8 8 8 ' , " ' !  

100(2); olo(2); 0o1(2) 

by 

g = l - x / 2 .  (4) 

The Euler characteristic may be derived in a simple 
way by dividing the surface into tiles. If f, e and v 
are the numbers of faces (tiles), edges and vertices, 
respectively, of  such an arbitrary tiling 

g = f  - e + v  (5) 

holds. In the case of a three-periodic surface, the 
tiling has to be compatible with the translations of 

the surface. Then the faces, edges and vertices may 
either be counted per unit cell or for the surface 
embedded in T 3. 

In the case of  a minimal balance surface generated 
from disc-like surface patches spanned by skew poly- 
gons in a set of three-dimensionally connected two- 
fold axes (Fischer & Koch, 1987; Koch & Fischer, 
1988), these patches are symmetrically equivalent and 
may directly be used as tiles. Then f, e and v are the 
numbers of skew polygons, of (straight) edges and 
of vertices, respectively, referred to a primitive unit 
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cell of H. If ep is the number of edges of one such 
polygon, and v~ is the multiplicity of the ith kind of 
symmetrically equivalent vertex (referred to a primi- 
tive unit cell of H),  (5) may be rewritten as 

x = f ( 1 - e p / 2 ) + E  v,. (6) 
i 

(a) 

(b) 

(c) 

Fig. 1. Relationship between the labyrinth graphs of (a) an R2 
surface, (b) an M C 6  surface and (c) an MC7 surface. The 
graphs are projected onto the ab plane. In each case that part 
of  one labyrinth graph is shown which corresponds to four unit 
cells of H. 

If the minimal balance surface consists of catenoid- 
like surface patches spanned between plane parallel 
nets of twofold axes (Koch & Fischer, 1988), me 
catenoids cannot be used as tiles. In this case, 
however, one disc-like tile may be produced from 
each catenoid by cutting it up between two vertices. 
By this, one additional edge per catenoid is generated. 
I f f N ,  eN and VN are the numbers of faces (polygons), 
edges, and vertices, respectively, counted for all nets 
of twofold axes per unit cell, (5) may be rewritten as 

X = VN -- eN. (7) 

From this a still simpler formula may be derived by 
making use of the relation 

f N  -- e s  + VN = 0. (8) 

AS each catenoid is bounded by two polygons from 
the nets, combination of (4), (7) and (8) leads to 

g = k 4- 1, (9) 

where k is the number of catenoids per primitive unit 
cell of H. 

In a similar way formulae have been derived for 
minimal balance surfaces built up from multiple 
catenoids (Koch & Fischer, 1989a; Karcher, 1988"), 
branched catenoids (Fischer & Koch, 1989at) and 
catenoids with spout-like attachments (Koch & 
Fischer, 1989b). k means the number of surface pat- 
ches per primitive unit cell of H in all cases. Then 

g =  k m + l  (10) 

holds if the surface patch is a multiple catenoid made 
up of m catenoids, 

g = k ( l + b ) / 2 + l  (11) 

if it is a branched catenoid with b branches at one 
end, and 

g = k s +  1 (12) 

if it is a catenoid with s spout-like attachments. 
Equation (9) also holds for minimal balance surfaces 
of which the surface patches are infinite strips 
(Fischer & Koch, 1989b). Then k is understood as 
the number of original catenoids per unit cell that 
have been united to the infinite rows. 

The last four entries of Table 1 contain minimal 
balance surfaces that are either spanned by non- 
intersecting twofold axes [* Y, (Fischer & Koch, 1987) 
and C( ± Y) (Koch & Fischer, 1988)] or only fixed at 
(roto)inversion centres [ Y* or gyroid surface (Fischer 
& Koch, 1987; Schoen, 1970) and oPa  (Karcher, 
1988)]. In these cases disc-like surface patches may 
be used which are partly or totally bounded by curved 
lines, e.g. geodesics. 

* These kinds of minimal surfaces have been derived simul- 
taneously and independently by Karcher (1988) and by the authors. 

t Table 1 of  this paper contains a misprint: Last column, second 
row should read 2(2x, x, 0) instead of 2(2x, x, z). 
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The genus calculated from a labyrinth graph has 
been confirmed in this way in each case. A tabula t ion  
of the tilings used will not be given here, however,  
because of  the close re la t ionship to the surface 

, ,t 

(a) 

(b) 

(c) 

Fig. 2. Surface patches for ±Y surfaces and for C( ~ Y) surfaces. 
The inherent symmet _r2j is la3-Pa3 in both cases. Only one eighth 
of the unit cell of Pa3 is shown: (a) 12-gon referring as well to 
a "Y surface as to a C( ± Y) surface; (b) catenoid-like surface 
patch referring to a ± Y surface; (c) pair of 6-gons referring to 
a C( ± Y) surface. 

patches descr ibed [except for type C( ± Y)] in the 
corresponding papers  cited above. The surface patch 
of  a C(  + Y) surface resembles that of  a ± Y surface: 
it also is a skew 18-gon with symmetry .3, and alter- 
nately one straight and two curved edges. The straight 
edges and the vertices at their  end points are the same 
in both cases, but the curved edges and their  common  
vertices differ. With xl-~ 1/12, a surface patch of  a 

± 1. C ( Y )  surface has the fol lowing vertices: O, O, a, 
! .! ! ! l ½_ 
2, 0 ,  1; /.~_ X, , X I ,  / - - X  I , 2, 4, / ;  2, 4,- 0 ;  X 1 , Xl ,  .~'1; 
/ ,  0 ,  0 ;  1, 1, 0 ;  l _ x  ! , 1..~_ X , ,  X 1" 1, 12, 4,1" 0 ,  -1 1. , 2, ~,, 
x,, ½-x,, xl; 0; 0, ½; x,, ½-x,, ½+x,; 
I I 1. 
z, ~, :, }~, 0, ½; x~, $,, ½-x~. The close re la t ionship 
between the two surfaces may be described also by 
another  way of  generation" A smaller  surface patch 
(12-gon) is only spanned  between the twofold axes 
within one eighth of  the unit  cell leaving free edges 
in between (cf. Fig. 2a).  If  this surface patch is con- 
t inued by the twofold rotations, the resulting surface 
has pairs of  t r iangular  holes with symmetry  .3. for 
the pair  (those rotoinversion centres of  l a3  that are 
kept in Pa3).  In a ± Y surface each such pair  of  holes 
is closed by a catenoid-l ike patch (cf  Fig. 2b), 
whereas in a C(  ± Y) surface the two holes are spanned  
separately by two disc-like patches (cf  Fig. 2c). 
Though these complet ions  of  course affect the 12-gons 
near  their free edges in different ways, most parts of  
them do not change visibly. 

A cubic unit  cell may  be or thorhombica l ly  de- 
formed in two ways" (1) the or thorhombic  and the 
cubic basis vectors coincide in their directions;  only 
their lengths are different; (2) for one of  the basis 
vectors the direction is kept; the other two change 
their directions (and their  common angle),  but they 
must be equal  in length. Accordingly,  two famil ies  of  
o r thorhombica l ly  deformed D surfaces, oDa and 
oDb, have been observed. The derivation with the aid 
of twofold axes, however,  yields only one family  of  
o r thorhombica l ly  deformed P surfaces, designated 
oP in previous papers and symbol ized oPb in Table 
1. Recently,  Karcher  (1988) has proved the existence 
of the second or thorhombic  family oPa. Its inherent  
symmetry  is l rnmrn-Pmmrn  and the surfaces are only 
fixed by inversion centres. 

The authors  thank Dr S. T. Hyde, Canberra ,  and 
Dr S. Lidin,  Lund,  for helpful  and enl ightening 
discussions.  
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Abstract 
X-ray dynamical diffraction in homogeneously bent 
crystals is studied theoretically in the Bragg case. The 
study starts from the Green function given previously 
by Chukhovskii, Gabrielyan & Petrashen' [Acta Cryst. 
(1978), A34,610-620] as an inverse Laplace transform 
and which can be viewed as an integral over all 
incident plane waves. The integrand is developed by 
means of an asymptotic representation of parabolic 
cylinder functions. Integration by the stationary- 
phase method leads to the evidence of curved X-ray 
paths and, in the case of large values of strain 
gradient, to the creation of a new wave field. The 
intensity of the new wave field is shown to be a 
fraction exp (-2rr[ ~,1) of the incident beam where lu[ 
is the inverse of the strain gradient expressed in 
reduced units. 

I. Introduction 
The propagation of X-rays in distorted crystals has 
been widely studied since 1961 when Penning & Pol- 
der first published their geometrical-optics theory of 
propagation of wave fields. Their theory was based 
on an analogy with the propagation of light in 
inhomogeneous media. Then Kato (1963, 1964) 
developed a more rigorous theory using the Eikonal 
formulation and leading to the same results. Penning 
& Polder and Kato considered crystals distorted by 
a uniform strain gradient in the transmission or Laue 
case. Let us mention here that all theoretical works 
in this field have considered uniform strain gradients, 
that is distortions such that the second derivative of 
the projection of the displacement vector u(r) on the 
diffraction vector h with respect to the incident so and 
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reflected Sh directions is constant [a2(h.u)/aSo 0 S  h -~- 

constant]. Then Bonse (1964) generalized Penning & 
Polder's theory in order to apply it to the reflection 
or Bragg case and obtained hyperbolic trajectories 
for incident waves outside the domain of total 
reflection. 

The three theories mentioned above are 
geometrical-optics theories and can only be valid for 
small strain gradients. Another approach to the study 
of X-ray propagation in distorted crystals was 
developed later, on the basis of the Green-Riemann- 
function method which takes into account diffraction 
phenomena and thus can be applied to large strain 
gradients. The Laue case was first treated by 
Petrashen' (1973), Chukhovskii (1974), Katagawa & 
Kato (1974), Petrashen' & Chukhovskii (1975, 1976), 
Chukhovskii & Petrashen' (1977). The Green function 
they obtained is a hypergeometric function which by 
itself does not provide any physical insight. Using 
asymptotic expansions, the authors were able to 
retrieve the results of geometrical theories in the case 
of small strain gradients and kinematical theory for 
extremely large strain gradients. Then Balibar, Chuk- 
hovskii & Malgrange (1983) expressed the hyper- 
geometric function as an inverse Laplace transform 
from which they were able to evidence the creation 
of a new wave field at the apex of the hyperbolic ray 
path for strong strain gradients. Its intensity was 
shown to be a fraction exp (-27r/]ao]) (where ao is 
proportional to the strain gradient) of the intensity 
of the wave field before the apex of the trajectory. 
These results gave a theoretical basis to the computed 
results obtained previously by Balibar, Epelboin & 
Malgrange (1975). 

The Bragg case was studied somewhat later. 
Petrashen' (1973) obtained the Riemann function as 
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